Evidence-based modeling of network discharge dynamics during periodic pacing to control epileptiform activity.
نویسندگان
چکیده
Deep brain stimulation (DBS) is a promising therapeutic approach for epilepsy treatment. Recently, research has focused on the implementation of stimulation protocols that would adapt to the patients need (adaptive stimulation) and deliver electrical stimuli only when it is most useful. A formal mathematical description of the effects of electrical stimulation on neuronal networks is a prerequisite for the development of adaptive DBS algorithms. Using tools from non-linear dynamic analysis, we describe an evidence-based, mathematical modeling approach that (1) accurately simulates epileptiform activity at time-scales of single and multiple ictal discharges, (2) simulates modulation of neural dynamics during epileptiform activity in response to fixed, low-frequency electrical stimulation, (3) defines a mapping from real-world observations to model state, and (4) defines a mapping from model state to real-world observations. We validate the real-world utility of the model's properties by statistical comparison between the number, duration, and interval of ictal-like discharges observed in vitro and those simulated in silica under conditions of repeated stimuli at fixed-frequency. These validation results confirm that the evidence-based modeling approach captures robust, informative features of neural network dynamics of in vitro epileptiform activity under periodic pacing and support its use for further implementation of adaptive DBS protocols for epilepsy treatment.
منابع مشابه
Adaptive control of epileptiform excitability in an in vitro model of limbic seizures.
Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the st...
متن کاملA New Approach of Modified Submerged Patch Clamp Recording Reveals Interneuronal Dynamics during Epileptiform Oscillations
Highlights Simultaneous epileptiform LFPs and single-cell activity can be recorded in the membrane chamber.Interneuron firing can be linked to epileptiform high frequency activity.Fast ripples, unique to chronic epilepsy, can be modeled in ex vivo tissue from TeNT-treated rats. Traditionally, visually-guided patch clamp in brain slices using submerged recording conditions has been required to c...
متن کاملLocal changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit...
متن کاملModeling of entorhinal cortex epileptic activity 1 Submitted to the Journal of Neurophysiology Revised version Realistic modeling of Entorhinal Cortex field potentials and interpretation of epileptic activity in the guinea-pig isolated brain preparation
246 words) Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea-pig isolated brai...
متن کاملRealistic modeling of entorhinal cortex field potentials and interpretation of epileptic activity in the guinea pig isolated brain preparation.
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 204 2 شماره
صفحات -
تاریخ انتشار 2012